

NANOTECHSAMN (www.cio.mx/nanotech/HOME.html) May 16-19, 2010

Nonlinear Spectroscopy of Si Nanostructures

Mike Downer University of Texas at Austin

Si nanostructures have properties & applications different from those of bulk Si

"Si lasers start to take shape"

Observation of optical gain in Si nanocrystals embedded in SiO_2 Pavesi *et al.*, Nature **408**, 440 (2000)

Walters et al, Nature Mat. 4,143 (2005).

Erogbogbo et al, ACS Nano.2, 873 (2008)

These interesting properties originate at Si NC/SiO₂ interfaces.
→ SHG has a reputation for being interface-specific

NANOTECHSAMN (www.cio.mx/nanotech/HOME.html) May 16-19, 2010

Nonlinear Spectroscopy of Si Nanostructures

Mike Downer University of Texas at Austin

Si nanostructures have properties & applications different from those of bulk Si

These interesting properties originate at Si NC/SiO₂ interfaces. step-edges → SHG has a reputation for being interface-specific

<u>Si NCs</u>

Junwei Wei

Co-workers

Si step-edges

Robert Ehlert

Y. Jiang PhD 2002

Adrian Wirth (MS 2007)

Jinhee Kwon Yongqiang An PhD 2006 PhD UC-Boulder 2004

Theory

Bernardo Mendoza CIO, León, México

W. Luis Mochan U. Nacional Autónoma Cuernavaca, México

Financial Support:

- Robert Welch Foundation
- U.S. National Science Foundation

Their elusive nano-interfaces make Si NCs interesting & challenging

diameter	# atoms	# surface atoms	surface atom fraction
2 nm	209	98	0.47
5 nm	3272	616	0.19

- Buried nano-interfaces inaccessible to many surface science probes and challenging to described theoretically (e.g. by DFT, Monte Carlo)
- Here we use multiple complementary spectroscopies

Surface & bulk contributions to SHG from planar surfaces are never separated with full rigor...

J. E. Sipe et al., Phys. Rev. B 35, 1129 (1987)

... but empirical separation is usually possible based on:

1. azimuthal anisotropy

2. spectrum

3. sensitivity to interface modification

Similarly, nano-interface & bulk contributions to SHG from Si NCs are intertwined, and must be distinguished empirically

Mochan et al., Phys. Rev. B 68, 085318 (03)

single nanoparticle:

From symmetry alone,

 $\vec{P}^{b}(\vec{r}) = \gamma \nabla E^{2} + \delta' \vec{E} \cdot \nabla \vec{E}$ $\vec{P}^{s}(\vec{r}) = \chi^{s}_{ijk}(a,b,f)F_{j}F_{k},$

assuming $l \ll r_{NC} \ll \lambda$

 $\vec{P}^{NL} = \Delta' \vec{E} \cdot \nabla \vec{E}$ $\Delta' \equiv n_{NC} [\gamma_e(\delta', \gamma, a, b, f) - \gamma_m(\delta', \gamma, a, b, f) - \gamma_q(a, b, f)/6]$

One group of samples is prepared by Si ion implantation into SiO₂

C. W. White et al., NIM B 141, 228 (1998) - ORNL

1 • Multi-energy implant (35-500 keV) yields uniform NC density (simplifies optical analysis)

X-ray diffraction confirms crystallinity after annealing

XPS and Raman scatter document conversion of multiplycoordinated a-Si clusters into 4-fold-coordinated c-Si NCs

After annealing at > 1000 C, negligible sub-oxide is detectable by XPS.

Annealed layer is dominated by c-Si (520 cm⁻¹) ...

... but low energy tail suggests residual a-Si content

Spectroscopic ellipsometry (SE) shows modified c-Si E₁ and E₂ critical points after annealing

[1] En Naciri *et al.* J. Chem. Phys. **129**, 184701 (2008)

[2] Cen *et al.*, Appl. Phys. Lett. **93**, 023122 (2008)

previous related SE results

[3] Seino, Bechstedt, Kroll, Nanotech. 20, 135702 (2009)

as-implanted:

- no E_{1.2} critical point features
- consistent with small a-Si clusters

after 1100 C anneal in Ar:

- E_{1,2} peaks appear
- E₁ suppressed, blue-shifted
- consistent with:
 - previous SE measurements [1,2]
 - ab initio calculations of optical properties of Si NCs in SiO₂ [3]

after 1100 C anneal in Ar + H₂:

- negligible further change
- SE appears selectively sensitive to c-Si core of Si NCs
- Measured $\epsilon_{\rm 1,2}$ determine Fresnel factors used in SHG analysis

PL excitation spectrum demonstrates that linear absorption occurs primarily in bulk c-Si cores, consistent with SE

Photo-excited carriers cross-relax to interface states for PL

Conventional single-beam SHG is weak

Cross-Polarized 2-beam SHG (XP2-SHG) enhances signal 100×

Jiang et al., Appl. Phys. Lett., 78, 766 (2001)

L Sun *et al*, Opt. Lett, **30**, 2287 (2005) Figliozzi *et al*, Phy. Rev. Lett. **94**, 047401 (2005)

Three independent z-scan measurements determine Γ_g , $|\Gamma_{NC}|$ and ϕ

- SHG signal growth in the glass is affected by phase mismatch
- The peaks result from relaxation of phase mismatch when boundaries of the sample fall within the 2-beam overlap region
- An analogous enhancement underlies 3rd harmonic microscopy with focused beams Barad, Appl. Phys. Lett. 70, 922 (1997)
- Peak heights are asymmetric because of linear absorption of SH light by NCs and interference of SHG signals generated by NCs and silica

Examples at 2 wavelengths illustrate extraction of fitting parameters $|\Gamma_{\rm nc}|/\Gamma_{\rm g}$ and ϕ

SE determined Fresnel factors used in this analysis

SHG spectra lack E_{1.2} critical point resonances

SHG spectra lack E_{1.2} critical point resonances

• annealed in Ar: enhanced $\Gamma_{\rm NC}$ near known SiO_x resonances

 annealed in Ar/H₂: minimal H-effect consistent with previous SHG

Spectroscopic XP2-SHG is sensitive to nc-Si/SiO₂ interfacial features* not observed by other spectroscopies that appear in recent MD simulations

Current Si NC studies

• Alternate Si NC samples

- oxide-embedded NCs smaller and larger than $d_{NC} = 3 \text{ nm}$
 - \bullet interface region stabilizes and thins with increasing $d_{_{\rm NC}}$
- fabricated by thermolysis of hydrogen silsesquioxane (HSQ)
 - C. M. Hessel *et al.*, Chem. Mater. **18**, 6139 (2006); J. Phys. Chem. C **111**, 6956 (2007)
 - benchtop sample preparation

- free-standing, H-terminated NCs
 - prepared by HF etching
 - eliminate the influence of oxides
 - platform for functionalization (e.g. fluorescence labeling, biosensing)

• fs pump, XP2-SHG probe experiments

• relaxation of bulk-excited carriers into nano-interface sites

Stepped (vicinal) Si surfaces are attractive templates for nanofabrication

- investigation of step-enhanced chemical reactions
- atomic wires suitable for transport
- "lithography" by self assembly of nanostructures
- ••••

Non-invasive in-situ sensors that provide atomic-scale information over the dimensions of a wafer are needed

Optical metrology bridges the nano-scale & wafer-scale

We combine SHG & RAS probes of stepped Si(001) surfaces in UHV

Dissociative adsorption of H₂ at D_B steps of Si(001):6° provides a case study in SHG & RAS analysis

In the absence of first principles theory, <u>Simplified Bond</u> <u>Hyperpolarizability Model (SBHM) provides</u> SHG - RAS interpretation at the molecular bond level

Powell et al., Phys. Rev. B 65, 205320 (2002)

- A chemical bond is the basic polarizable unit
- Induced axial SH polarization of bond j:

$$\vec{p}_j^{(2\omega)} = \beta_j^{\parallel} \hat{b}_j (\hat{b}_j \cdot \vec{E}_{in}^{\omega})^2$$

 $\hat{b}_{j} = bond unit vector$ $\beta_{j}^{\parallel} = axial hyperpolarizability$

• Far-field SH radiation of bond *j* :

$$\vec{E}_j^{2\omega} = \frac{e^{ikr}}{r^2} (\vec{I} - \hat{k}\hat{k}) \cdot \vec{p}_j^{(2\omega)}$$

• Total far-field SH radiation:

$$\vec{E}_{j}^{2\omega} = \frac{e^{ikr}}{r^{2}} (\vec{I} - \hat{k}\hat{k}) \cdot \sum_{j} \vec{p}_{j}^{(2\omega)}$$

• Simplifications:

- transverse hyperpolarizabilities neglected
- local field corrections folded into $\beta\mbox{'s}$
- boundary conditions not treated rigorously

Multi-parameter fitting (like Wall St. investing) requires "government regulation" based on...

... Bond physics & chemistry

... Kramers-Kronig consistency

Bonds that are parallel to **E**^{\u03c0}, charge-rich and non-centrosymmetric contribute most strongly

.. Consistency for <u>Multiple Angles</u> (θ) and <u>Polarizations</u> (MAP)

Full SBHM fits SHG data with high fidelity

Strict regulation: derive RAS response from SHG data

Hyperpolarizability spectra show charge transfer from step dangling bond to 3 underlying bonds when H₂ dissociatively adsorbs at step-edges

–**∎**– clean –□− 1000 L H₂

With SHG-RAS-SBHM, we watch charge transfer accompanying the formation of specific stepedge chemical bonds.

RAS-SHG-SBHM is opening opportunities to monitor and control nanofabrication of organic monolayers on Si(001)

Hamers *et al.* (2000). Acc. Chem. Res. **33**(9): 617-624 Lu *et al.*, Phys. Rev. B **68**, 115327 (2003)

Summary:

Noninvasive optical spectroscopy of nano-interfaces

I. 0-D: Si NCs embedded in SiO₂

- importance: Si LEDs, bio-sensors
- method: XP2-SHG + SE, Raman, XPS, PL
- **results:** new SHG evidence for a-Si and SiO_x nano-interfacial transition regions

Figliozzi et al., Phys. Rev. Lett. 94, 047401 (2005); Wei et al., in preparation

II. 1-D: step-edges of vicinal Si

- importance: templates for molecular electronics, quantum wires & computers
- method: SHG & RAS & SBHM
- results: bond-specific hyperpolarizabilities
 - visualization of step-edge chemical bond formation
 - control & optical monitoring of cyclopentene nano-lithography by self-assembly

Kwon *et al.*, Phys. Rev. B **73**, 195330 (2006). Ehlert *et al.*, J. Opt. Soc. Am. B **27**, 981 (2009)

END